🆚Как сравниваются методы перерасчёта градиента и focal loss при работе с несбалансированными классами
🔘 Focal loss добавляет коэффициент, который уменьшает вклад уже хорошо классифицированных примеров, тем самым фокусируя обучение на сложных, часто ошибочно классифицируемых объектах. Это особенно полезно, когда модель быстро обучается на «лёгких» примерах и игнорирует «трудные».
🔘 Gradient re-scaling (пересчёт градиента с учётом частоты классов) нацелен на устранение дисбаланса между классами, регулируя вклад каждого класса в градиент. Часто это реализуется как взвешивание классов.
📍Сравнение: — Focal loss фокусируется на сложности примеров, а не на частоте классов. — Gradient re-scaling напрямую учитывает частоту классов, но не различает лёгкие и трудные примеры внутри одного класса.
В задачах с сильным дисбалансом имеет смысл комбинировать оба метода — использовать пересчёт градиентов по классам и применять focal loss, чтобы дополнительно усилить обучение на сложных примерах.
🆚Как сравниваются методы перерасчёта градиента и focal loss при работе с несбалансированными классами
🔘 Focal loss добавляет коэффициент, который уменьшает вклад уже хорошо классифицированных примеров, тем самым фокусируя обучение на сложных, часто ошибочно классифицируемых объектах. Это особенно полезно, когда модель быстро обучается на «лёгких» примерах и игнорирует «трудные».
🔘 Gradient re-scaling (пересчёт градиента с учётом частоты классов) нацелен на устранение дисбаланса между классами, регулируя вклад каждого класса в градиент. Часто это реализуется как взвешивание классов.
📍Сравнение: — Focal loss фокусируется на сложности примеров, а не на частоте классов. — Gradient re-scaling напрямую учитывает частоту классов, но не различает лёгкие и трудные примеры внутри одного класса.
В задачах с сильным дисбалансом имеет смысл комбинировать оба метода — использовать пересчёт градиентов по классам и применять focal loss, чтобы дополнительно усилить обучение на сложных примерах.
At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?
Why Telegram?
Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.
Библиотека собеса по Data Science | вопросы с собеседований from us